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Abstract 

We suggest the construction of a set of interest rate volatility indices (IRVIXs) that measure 

the future volatility of three-month tenor forward rates over horizons ranging from one to 

ten years ahead. This is a very important difference with respect to other indices such as 

VIX or VDAX in the equity market or the MOVE Indices for interest rates, which measure 

volatility over very short horizons (from one to six months ahead). We observe that the 

current financial crisis has had a severe impact on both short- and long-term IRVIXs. The 

potential uses of these indices are broad and include the introduction of derivative 

contracts, the estimation of the volatility term structure or use as leading indicators of the 

business cycle. 
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1. Introduction 

In 1993, the Chicago Board Options Exchange (CBOE) introduced the first implied 

volatility index for a stock market using data from options on the S&P100 Index: the S&P 

100 Volatility Index (VIX). VIX very quickly became the benchmark risk measure for 

stock market volatility. It represents the implied volatility of an at-the-money (ATM) 

“theoretical” S&P 100 option with constant time to maturity (30 calendar days).1 In 2003, 

the CBOE introduced the new VIX, which was constructed through an updated 

methodology and computed from options on the S&P 500 rather than the S&P 100. 

Following the example of the CBOE, other options markets introduced their own 

volatility indices in Europe. In 1994, the Deutsche Börse created a volatility index for the 

German stock market, VDAX, constructed from options on the DAX Index.2 In 1997, the 

MONEP (Marché des Options négociables de Paris) introduced the VX1 and VX6 indices 

to measure the uncertainty concerning the French stock market from options on the CAC-

40 Index.3 VDAX has a forecast horizon of 45 calendar days, whereas VX1 and VX6 look 

ahead 31 and 185 calendar days, respectively. An attempt to create implied volatility 

indices in the context of emerging markets can also be found in Skiadopoulos (2004) for 

the Greek derivatives market. 

Nevertheless, far less attention has been paid by researchers and practitioners to 

equivalent indices for interest rate volatility. In particular, the two indices of reference for 

volatility in the fixed-income market are the Merrill Option Volatility Expectations 

(MOVE) Index constructed by Merrill Lynch and the Lehman Brothers Swaption Volatility 

                                                   
1 Details regarding the construction of VIX are available in Fleming, Ostdiek, and Whaley (1995). 
2 See Lyons (2005) for an in-depth description of the construction process of VDAX. 
3 See Moraux, Navatte, and Villa (1999) for further details about these indices. 
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Index (LBPX). MOVE is constructed as a weighted average of the normalized implied 

volatility of one-month options on the two-year, five-year, ten-year, and 30-year Treasury 

securities.4 Notice that although the underlying instruments are long-term assets, the 

maturity of the options and so the forecast horizon for volatility is only up to one month. 

Regarding the LBPX, it represents the weighted average of the normalized implied 

volatilities of a basket of liquid swaptions.5 Thus, MOVE measures implied volatility over 

a forecast horizon similar to VIX, whereas LBPX does not have a specific forecast horizon 

for volatility. 

An important advantage of interest rate derivatives markets over equity derivatives 

markets is that the formers contain option-like instruments with very long terms to maturity 

which allows us to develop a method to measure the uncertainty about the future evolution 

of a forward rate with horizons ranging from one to ten years ahead. Thus, IRVIXs are 

aimed at providing a pure measure of the future volatility of forward rates with specific 

maturities. For this purpose we work with data from the U.S. cap (floor) market. Although 

this information could be directly obtained from caplet (floorlet) quotations, these contracts 

are quite illiquid; thus, obtaining a complete enough range of caplets (floorlets) with 

different maturities can be complicated. Moreover, their prices, if available, can be 

distorted by this lack of liquidity.  

It is important to point out that one of the requirements of any volatility index is that 

it must be constructed from a sufficiently liquid instrument. Consequently, IRVIXs are 

implemented using data from one of the most liquid interest rate derivatives: caps and 
                                                   
4 Less known indices constructed by Merrill Lynch include the MOVE indices computed from options with 
time to maturity of three and six months, and the swaps MOVE (SMOVE) indices based upon similar swaps 
with maturities of one, three and six months.  
5 In addition to LBPX, Lehman Brothers provides a different index named LBOX. The former index 
computes volatility based on prices while the latter computes volatility based on yields. 
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floors. The construction of IRVIXs from these instruments can give a much more accurate 

indication of the actual uncertainty regarding the future behavior of interest rates for a wide 

range of maturities, without the intrusion of the noise caused by liquidity. 

Of course, we might be tempted then to directly use cap (floor) implied volatilities 

to measure uncertainty about the future behavior of interest rates. However, they present an 

important disadvantage over IRVIXs. As we show in the next section, cap (floor) 

volatilities, often referred to as flat volatilities, are in fact a mixture of the future volatilities 

over different term horizons of a set of forward rates with diverse terms to maturity. Thus, 

it is difficult to assess what is really behind these flat volatilities. 

This way, the use of data from the cap (floor) market poses the problem of having to 

deal with a contract where the underlying rate is not a single forward rate but a set of 

forward rates with consecutive maturities. Recall that caps (floors) consist of portfolios of 

concatenated caplets (floorlets), i.e., options on forward rate agreements with consecutive 

maturities. 

 Therefore, the construction of each IRVIX, which is aimed at providing a measure 

of the uncertainty of the future evolution of a particular forward rate, will require the 

extraction of information about the prices of the caplets (floorlets) that compose caps 

(floors), as caplets (floorlets) are the contracts that do have an underlying specific forward 

rate. 

In any case, apart from its high liquidity, the use of caps (floors) presents another 

advantage. The resulting indices can provide information about the future performance of 

interest rates for very long horizons. In fact, we propose the construction of a set of 

alternative indices with horizons ranging from one to ten years ahead. This constitutes one 
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of the main differences with respect to MOVE, which captures the uncertainty about long-

term yields over a very short horizon (one month). Thus, IRVIXs can be particularly useful 

for obtaining information about the long-term level of uncertainty of economic agents with 

respect to one of the main economic and financial variables: interest rates. Short-term 

IRVIXs changes would indicate temporary changes regarding the uncertainty of the future 

behavior of interest rates. However, if changes in short-term IRVIXs are accompanied by 

changes in long-term IRVIXs, this would be a signal of long and permanent periods of 

turbulence in interest rate markets. In fact, short-term IRVIXs reacted very quickly to the 

beginning of the current financial crisis, whereas long-term IRVIXs responded more slowly 

to the financial turmoil.  

The set of indices is obtained through the implementation of a methodology similar 

to that used in the equity derivatives market to construct well-known volatility indices, such 

as VIX or VDAX.  

Although their most direct application consists of providing a measure of the 

uncertainty regarding the future evolution of forward interest rates over different horizons, 

there is also a wide range of other potential applications. 

One of the most promising applications is the possibility of introducing futures and 

options on the indices, as occurred after the launch of VIX. In February 2006, options on 

VIX began trading on the CBOE, following the previous introduction of VIX futures on the 

CBOE Futures Exchange (CFE) in 2004. According to Areal (2008), in practice, these 

derivatives can be used in turn to create hedging strategies against changes in volatility or 

to speculate on changes in the market volatility. As shown later on, the dramatic changes in 

interest rate volatility experienced since the beginning of the current financial crisis can 

make IRVIX a powerful instrument to protect against these interest rate volatility changes.  
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In fact, the statistical analysis of IRVIXs shows that they share many similarities 

with VIX, thus indicating their potential use as the underlying instruments of derivative 

contracts. In this sense, it must be pointed out that short-term IRVIXs present an 

outstanding negative relationship with their underlying forward rates. This finding is 

particularly important and should be taken into account when using some derivative 

contracts, such as caps or floors, for hedging against interest rate movements, since these 

interest rate changes will take place together with important changes in interest rate 

volatility.  

Other applications of IRVIXs are their potential use for the estimation of the 

volatility term structure, which is one of the main topics in the valuation of interest rate 

derivative securities. IRVIXs can also be used for analyzing the role of implied volatility in 

forecasting future realized volatility6 or for testing the additional information content of 

interest rate volatility with respect to the future state of the economy, improving the broadly 

documented forecasting ability of the term structure of interest rates with respect to the 

business cycle. 

 The structure of the paper is as follows. The next section is focused on caps (floors) 

valuation within the Libor Market Model (LMM) framework. This model is used by 

practitioners to quote these contracts. Moreover, caps and floors are quoted in terms of 

implied volatilities, and contract prices are then obtained through the application of the 

well-known Black pricing formula. Thus, we provide a brief description of the assumptions 

of LMM. In Section Three, we discuss how to implement IRVIX, using the methodology 

                                                   
6 See Poon and Granger (2003) for a wide review on this topic for different markets and time periods. See, 
among others, Fleming, Ostdiek, and Whaley (1995), Moraux, Navatte, and Villa (1999), Bluhm and Yu 
(2001), Corrado and Miller (2005) and Becker, Clements, and White (2007) for an analysis of the forecasting 
ability of implied volatility indices. 
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applied in equity derivatives markets as a reference. Section Four describes the database 

and the methodology applied for the construction of the set of indices. In Section Five, the 

behavior and statistical properties of the volatility indices are analyzed, and finally, Section 

Six provides a summary of the study. 

 

2. Caps and floors valuation. The LMM and the Black formula 

 A forward rate agreement (FRA) is the underlying of one of the simplest interest 

rate options: caplets (floorlets). A FRA can be defined as an agreement between two parties 

at time t to exchange at time Ti+τ an amount of money proportional to the difference 

between a strike, K, agreed upon at time t, and the floating interest rate outstanding at Ti, 

L(Ti,Ti +τ). Thus, the cash flow generated at Ti+τ by this contract is given by 

    KTTLNP ii ),( ,        (1) 

where NP is the notional principal of the contract, and τ is the tenor interval. 

 A caplet7 is an option on this FRA that will be exercised only if L(Ti,Ti +τ) is greater 

than the strike K. Thus, the cash flow of this option at Ti+τ will be 

    KTTLNP ii ),( ,        (2) 

where 

   0,),(),( KTTLMaxKTTL iiii    .     (3) 

 The LMM and market quotations assume that the forward interest rate f(t,Ti,Ti+τ)8 

follows a lognormal stochastic process.9 Taking into account that the limiting value of the 
                                                   
7 Floorlets are defined in an analogous way, but, in this case, cash flows are generated when the floating rate 
is below the strike K. 
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forward rate when t approaches Ti is equal to the floating interest rate L(Ti,Ti +τ), and 

assuming there are no arbitrage opportunities, it is easy to derive the well-known Black’s 

formula used to value this sort of contracts.10 According to this formula, the value of a 

caplet per unit of notional principal is given by 

    ),()()(),,(),,,,( 21, iii
K

Blackii TtPhNKhNTTtfKTtCaplet , (4) 

where 

Ti is the exercise date of the caplet (and the maturity date of the underlying forward 

rate), 

τ is the tenor of the underlying forward rate (and Ti+τ is the maturity date of the 

caplet), 

K is the strike rate, 

P(t,Ti+τ) is the price at t of a unit-zero coupon bond with maturity at Ti+τ, 

 N(·) is the cumulative normal distribution, 

 
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
,    (6) 

and 

                                                                                                                                                           
8 We will refer to Ti as the maturity date of the forward rate and τ as the tenor of the forward rate.  
9 See Brigo and Mercurio (2006) for an extensive review of LMM. 
10 See, for instance, Díaz, Meneu, and Navarro (2009) for a brief overview of the derivation of the Black 
formula to value these securities. 
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K
Blacki,  is the so-called Black implied volatility of a caplet with exercise date Ti and 

strike K. 

Black implied volatility can be understood, within the LMM, as an average of the 

instantaneous volatility of the log of the forward rate f(t,Ti,Ti+τ) over the period [t,Ti]. In 

particular,  

)(

),(
)(

2

2
, tT

duTu

i

i

T

tK
Blacki

i





 ,        (7) 

where ),( iTt  is the instantaneous volatility at t of the lognormal process followed by the 

forward rate f(t,Ti,Ti+τ). 

 According to the LMM and Equation (7), the implied volatility of caplets should be 

the same for all caplets with the same term to maturity, independent of the strike K. 

However, in practice, the market implied volatility of caplets (with everything else equal) 

varies with the strike rate K. 

In any case, the instruments we are going to use to construct the interest rate 

volatility indices are not caplets (floorlets), but much more liquid and popular interest rate 

derivatives in the over-the-counter (OTC) markets: caps (floors). According to the Bank for 

International Settlements11, the outstanding notional amount of OTC interest rate options 

(caps, floors, collars and corridors) in December 2009 was $48.8 trillion. 

 A cap can be understood as a portfolio of caplets with the same strike and tenor but 

with concatenated maturities. For instance, a two-year cap consists of a chain of seven 

caplets with exercise dates in three, six, nine, 12, 15, 18 and 21 months, respectively, all of 

                                                   
11 http://www.bis.org/ 
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them with a tenor of three months (τ = 3 months). The maturity date of each caplet 

coincides with the exercise date of the following one.  

 The payoffs generated by a cap can be described as follows. On the exercise date of 

the first caplet that composes the cap, the floating rate of the contract is observed and 

compared to the strike. If the floating rate is greater than the strike, then on the second reset 

date the seller of the cap pays the holder the difference between the floating rate and the 

strike multiplied by the notional principal and the tenor. If the floating rate is less than the 

strike, there is no payoff from the cap. Thus, through the life of a cap, payments are due at 

the end of each tenor interval, although the amount is known at the reset date (at the 

beginning of the tenor interval) when the floating interest rate is observed.12 

 Then, the price at t of an n-year cap with strike K can be obtained as the sum of the 

values of the caplets that make it up. That is,  

),,,,(),,( ,

1·

1
·

K
Blackii

kn

i
kn KTtcapletKTtCap 





 ,     (8) 

where k can take values of 2 or 4 depending on the length of the tenor interval, which is six 

or three months, respectively,13 and T1, T2, . . .,Tn·k-1 are the reset dates of the cap that 

coincide with the exercise dates of the caplets that compose the cap and Tn·k = Tn·k-1+τ, i.e., 

the date that the last cash flow will be due if L(Tn·k-1,Tn·k-1+τ) > K. 

However, quotations in the cap market are computed assuming that the volatility of 

all the caplets that compose a particular cap is the same. In fact, an n-year cap with strike K 

is quoted by the market through the so-called flat volatility, which is the constant value 

                                                   
12 Caps are usually defined so that the initial floating rate, even if it is greater than the cap rate, does not lead 
to a payoff on the first reset date (Hull 2009). 
13 In the case of the US market, caps have a three-month tenor. 
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K
flatn,  that equals the sum of the values of all of the caplets that compose the cap to its 

market price, i.e., the value K
flatn,  such that 

),,,,(),,( ,

1·

1
·

K
Blackni

kn

i
kn KTtcapletKTtCap 





 .     (9) 

Therefore, flat volatilities cannot be considered to be a pure measure of the future 

evolution of volatility of a forward rate; rather, they are a mixture of the average future 

volatilities of a set of forward rates with consecutive terms to maturity.14  

 Theoretically, flat volatilities should be the same for all caps with the same term to 

maturity, but in practice we find that flat volatilities depend heavily on the strike rate K, 

giving rise to volatility surfaces. 

 

3. Implementing IRVIX 

As stated above, the objective of IRVIX is to provide an index that reflects the 

uncertainty about the future behavior of a forward rate with a given term to maturity. 

To obtaining this information from the cap (floor) market, two problems have to be 

overcome. The first one is, as mentioned before, that flat volatilities are not a pure measure 

of the expected future volatility of a specific forward rate but rather a mixture of the future 

volatility of a set of forward rates. For instance, following the example of the former 

section, the flat volatility of a two-year cap is a mixture of the average future volatility of 

three-month tenor forward rates with maturities in three, six, nine, 12, 15, 18 and 21 

months.  

                                                   
14 The difference between K

Blacki, and K
flatn,   is similar to the difference between zero-coupon rates and the 

yields to maturity of coupon-bearing bonds. 
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The second problem is that the flat volatility of an n-year cap varies considerably 

with the strike rate K, i.e., we have to deal with the problem of the smiles and smirks, a 

problem with specific features in this market due to the different meaning of what should 

be understood, in this case, by an ATM option. Recall that caps do not have a single 

underlying but a set of them (all forward rates involved in the valuation of the set of caplets 

that makes up the cap). Thus, we have to determine the strikes of the caps to be used for the 

construction of IRVIX. 

 These two problems will be faced in a two-step process. The first step consists of 

recovering the implied prices (and volatilities) of the individual caplets that compose the 

caps using a stripping procedure.15 The second step will be to apply interpolation 

techniques, similar to those used in the stock market to construct VIX or VDAX from the 

implied volatilities of options with different strikes.16 

 In particular, the methodology applied in the stock market for the construction of 

these indices consists of interpolating the implied volatilities of a set of nearest to-the-

money call and put options at the two nearest maturities to the constant time to expiration 

established for the construction of the indices (30 calendar days in the case of VIX and 45 

calendar days in the case of VDAX). However, in our case, caplets recovered from caps 

have a constant life period (from t to Ti, exercise date of the option), and thus, the only 

criterion we need to consider in the selection of the caps involved in the construction of 

IRVIX is the strike. 

                                                   
15 See Hernández (2005). 
16 Since 2003 a new methodology has been developed to construct volatility indices based on variance swap 
replication techniques (see Carr and Madan, 1998). However, this new method assumes that short-term 
interest rates are non-stochastic. If this assumption can be considered reasonable for valuing stock options or 
options on long-term bonds, it is unacceptable for IRVIXs, particularly for those with a long-term horizon. 
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 The stripping process consists of obtaining the price at time t of a caplet with a 

strike K and reset date Ti, caplet(t,Ti,τ,K, K
Blacki, ), by subtracting the prices of two 

consecutive caps with the same strike K. That is, 

),,(),,(),,,,( 1, KTtCapKTtCapKTtCaplet ii
K
Blackii   ,    (10) 

where Cap(·) are defined as in Equation (9). It must be emphasized that these two caps 

must have the same strike K and consecutive maturities.  

 Once the price of the caplet is obtained, it is easy to derive the corresponding 

implied volatility from the Black pricing formula. Note that we obtain different implied 

Black volatilities for the same caplet, depending upon the strike rate K.  

 To determine the strikes of the caps to be used for the construction of IRVIX, we 

should point out that the most liquid caps are the ATM ones. In this market, an n-year cap 

is said to be ATM if the strike of this instrument equals the fixed rate of a swap that has the 

same payment days as the cap.17 However, if we have to apply the technique described 

above to obtain caplet prices, we cannot use ATM caps because two consecutive caps 

would have different strikes to the extent that swaps with different maturities usually have 

different fixed rates. 

 Therefore, we have to deal with the problem of determining the strike of an ATM 

caplet. We propose to use those available caps with strikes closest to the outstanding 

forward rate f(t,Ti,Ti +τ) defined as 


 11

),(
),(

),,( 












i

i
ii TtP

TtP
TTtf  ,      (11) 

                                                   
17 See, for instance, Hull (2009). 
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where P(t,Ti) and P(t,Ti+τ) are the prices at t of unit zero-coupon bonds with maturities at 

Ti and Ti+τ, respectively. 

 Particularly, we will use caps with strikes immediately over and below f(t,Ti,Ti+τ), 

and we will refer to them as KA and KB, respectively, with KB < f(t,Ti,Ti+τ) < KA. 

 By using Equation (10), we can obtain the prices of caplets with strikes KA and KB. 

These two caplets are the first out-of-the-money caplet (the one with strike KA) and the first 

in-the-money caplet (the one with strike KB). Then, we proceed to compute their implied 

volatilities using the Black formula. We denote these two implied volatilities by 
AK

Blacki,  and 

BK
Blacki, . 

 Finally, we obtain the implied volatility of a theoretical caplet with the strike equal 

to the current forward rate f(t,Ti,Ti +τ) by linear interpolation, using the following formula: 


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




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


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 BA

B
iiK

BlackiBA
ii
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Blackii KK

KTTtf
KK

TTtfK
TtIRVIX

AB ),,(),,(
),( ,,





 ,  (12) 

where IRVIX(t,Ti) represents the annualized implied volatility of an ATM caplet with a 

constant horizon (Ti-t). Thus, IRVIX(t,Ti) can be understood as a measure of the uncertainty 

about the future evolution of the forward rate f(t,Ti,Ti +τ) over the period [t,Ti]. 

 

4. Data and methodology 

In conducting this study, we used two sets of data from the U.S. fixed-income 

market provided by Reuters. The first one includes market-implied flat volatilities of caps 
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(floors) for different strikes and terms to maturity.18 The second one consists of zero-

coupon curves (discount factors bootstrapped from the most liquid rate instruments 

available, a combination of deposits, liquid futures and interest rate swaps). Daily data were 

collected for the period from August 26, 2004 to January 30, 2009.  

 Flat volatilities correspond to caps (floors) with maturities in one, two, three, four, 

five, six, seven, eight, nine, ten, 12, 15 and 20 years and with the following range of strike 

rates: 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.05, 0.06 and 0.07. These strikes cover 

the range of values of the forward rates during the sample period such that there will be 

always a strike above and below the outstanding forward rates. 

 One of the problems that appear when we try to obtain caplet prices using the 

stripping technique is that we need the prices of consecutive caps with the same strike. In 

the case of the American market, the tenor interval is three months; thus, we need prices of 

caps with maturities every three months. However, markets only provide caps with annual 

terms to maturity, i.e., with an integer number of years to maturity. 

Therefore, interpolation and extrapolation techniques must be applied to obtain flat 

volatilities of caps with maturities non available. To accurately capture the hump usually 

observed in the shape of the term structure of flat volatilities, we eventually proceed to 

interpolate flat volatilities by using cubic splines. We proceed to use linear interpolation or 

extrapolation only when the number of available flat volatilities corresponding to caps with 

the same strike is less than six. It is important to highlight that these 

interpolation/extrapolation techniques must produce uniquely determined values of 

                                                   
18 Information provided by Reuters consists of flat volatility quotes of caps/floors; at a particular strike and for 
a concrete term to maturity, traders may contract the same instrument as a cap or a floor depending on their 
expectations. 
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unobservable flat volatilities with any term to maturity up to ten years and three months 

(the maturity date of the caplet with an exercise date in ten years time) in such a way that 

anyone should be able to exactly reproduce the same outcomes given a set of volatility 

quotations. See the Appendix for a detailed description of the interpolation/extrapolation 

procedure.  

In any case, this method provides the flat cap volatilities needed to strip caplet 

prices according to the process described in the former section to construct the set of 

IRVIXs; for a given strike K we get flat volatilities of caps with maturities every three 

months, and then the stripping technique is applied to obtain the prices of caplets with any 

exercise date from one to ten years and strike K.  

Once we have obtained caplet prices, we can proceed to the second step. For a given 

exercise date Ti, we select the two caplets with strikes closest to the outstanding forward 

interest rate f(t,Ti,Ti +τ) and then recover their implied volatility using the Black formula. 

Eventually, we apply the linear interpolation, as shown in Equation (12), to obtain the 

theoretical ATM implied volatility of a caplet with a particular exercise date Ti. 

 According to Fleming, Ostdiek, and Whaley (1995), this linear interpolation of 

implied volatilities from OTM and ITM options to create an ATM implied volatility 

implicitly assumes that the “volatility smile” is well approximated by a line. Thus, this 

approximation is considered reasonable when the interpolation is made for a small range of 

strikes. In this case, the two strikes closest (above and below) to the forward rate f(t,Ti,Ti+τ) 

can differ only by 100 or 50 basis points. Figures 1 through 3 show the surfaces of flat 

volatilities corresponding to caps (floors) with maturities in one, five and ten years, 
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respectively, as a function of time and strikes K.19 According to these pictures, smiles have 

had very different shapes and magnitudes. 

  

                                                   
19 Flat volatility quotes for the strike 0.07 are not provided for any term to maturity from August 26, 2004 to 
November 11, 2004. Thus, surface graphs are constructed using the same flat volatility quotes for the strikes 
0.06 and 0.07 up to November 12, 2004. 
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FIGURE 1. One-year flat cap (floor) volatilities as a function of strikes across the sample 
period. 
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FIGURE 2. Five-year flat cap (floor) volatilities as a function of strikes across the sample 
period. 

 

 

 

  



20 
 

FIGURE 3. Ten-year flat cap (floor) volatilities as a function of strikes across the sample 
period. 
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Using the methodology proposed in this paper, we construct a daily set of interest 

rate volatility indices for forward rates with a three-month tenor and terms to maturity of 

one, two, three, four, five, seven and ten years. According to Duarte, Longstaff, and Yu 

(2007), these are the most-liquid cap maturities. 

In particular, and according to Equation (7), IRVIX provides the average future 

volatility of a forward interest rate up to its maturity. For instance, the implied volatility 

index IRVIX(t,1Y) measures the market’s assessment at any time t of the uncertainty 

regarding the evolution of the forward rate f(t,t+1Y,t+1Y+3M) during the next year, and 

IRVIX(t,10Y) would indicate the average volatility of the forward rate 

f(t,t+10Y,t+10Y+3M) during the next ten years. 

This way, IRVIXs provide a set of forward-looking measures of expected volatility 

different to already existing volatility indices like those constructed by Merrill Lynch. The 

Merrill Lynch´s indices measure the implied volatility of long-term yields of Treasury 

securities over a relatively short horizon (the most popular is the one constructed from one-

month options although indices with three and six-month horizons are also available). As 

far as IRVIXs are concerned, they represent market uncertainty about the expected three-

month interest rate in the distant future (over horizons ranging from one to ten years ahead).  

Another advantage of IRVIXs is that they provide a pure measure of the volatility of 

forward rates compared with flat volatilities that, according to LMM, are a mixture of the 

volatilities of forward rates with different tenors and terms to maturity. For instance, K
flat,1

would be some sort of average of the future volatilities of the forward rates f(t,t+3M,t+6M), 

f(t,t+6M,t+9M) and f(t,t+9M,t+1Y) up to their respective maturities.  
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5. Empirical analysis 

 In this section we analyze the behavior and statistical properties of a set of interest 

rate volatility indices covering different forecast horizons (one year, two years, three years, 

four years, five years, seven years and ten years). The period covered by this study extends 

from August 26, 2004 to January 30, 2009. The fact that the sample period comprises the 

origin of the current financial crisis is especially relevant for visualizing the impact of the 

financial turmoil on the indices and thus on uncertainty with respect to the future behavior 

of forward rates. This outcome suggests the potential use of IRVIXs as leading indicators 

of the business cycle. We also analyze the relationship between IRVIXs and other volatility 

indices; in particular, with respect to MOVE, LBPX, and VIX. The empirical analysis 

additionally provides evidence of an overwhelming negative relationship between the 

indices and their underlying forward rates, similar to how VIX or VDAX are related to their 

underlying stock market indices. This result should be taken into account in the modeling 

of interest rate dynamics and in the design of hedging strategies. 

 Figure 4 plots the daily levels of IRVIXs with the two closest and two furthest 

forecast horizons: one year, two years, seven years and ten years.  
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FIGURE 4. Daily levels of IRVIX(t,1Y), IRVIX(t,2Y), IRVIX(t,7Y) and IRVIX(t,10Y) 
during the period from August 26, 2004 to January 30, 2009. 
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 IRVIX(t,1Y) and IRVIX(t,2Y) show a decreasing trend from the beginning of the 

sample period up to approximately mid-2006. During the following months, from 

September 2006 onwards, the series started to show frequent and larger spikes. Finally, 

after the beginning of the current financial crisis in the summer of 2007, the levels of the 

volatility indices remarkably increased and larger (up and down) spikes were observed. 

During the period associated with the crisis, we observe a dramatic increase in IRVIX(t,1Y) 

from 10% to nearly 80% in January 2009, while IRVIX(t,2Y) experienced a smoother 

upwards trend, reaching the maximum level of 66% in December 2008. It is interesting to 

observe that financial markets, particularly cap (floor) markets, appeared to be seized by 

uncertainty from September 2006.20 This is a noteworthy finding that suggests the possible 

use of IRVIXs as potential leading indicators of the business cycle.  

 On the whole, graphs show that the average level of the indices decreases as the 

forecast horizon increases. Long-term expectations, as measured by IRVIX(t,7Y) and 

IRVIX(t,10Y), remain quite stable around a mean value along the entire sample. Graphs 

only exhibit an increase in the indices levels at the end of the period,21 above all from mid-

2008, when the levels of the volatility indices more than doubled with respect to the values 

prior to the Great Recession. 

 Although these volatility increases observed in long-term volatility indices are small 

compared with those experienced by short-term volatility indices, they may indicate a 

deeper and more permanent increase in the market uncertainty about interest rates. Recall 

that the IRVIX provides the average level of future volatility until the maturity of the 
                                                   
20 Although the crisis burst out during mid-2007, some analysts started to detect and warn a turning point in 
home prices and in the demand for loans to buy new houses during the summer of 2006. See, for instance, The 
Economist´s articles “What´s that hissing sound?” and “Gimme shelter” (August 26, 2006). 
21 Intermediate maturities of the indices also tend to reflect this feature; the levels and evolution of the indices 
become more moderate as the forecast horizons move further away from today.  
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underlying forward rate (see Equation (7)). Therefore, a transitory increment in this 

volatility should have a limited impact on long-term IRVIXs. Only a general and permanent 

increment in the future volatility of forward rates would have a significant impact on these 

long-term, forward-looking measures of volatility.  

 Table 1 shows the summary statistics of the set of interest rate volatility indices. We 

suggest analyzing descriptive statistics for the full sample as well as before and after the 

beginning of the subprime crisis. Thus, the first subsample extends from August 26, 2004 

to July 31, 2007, whereas the second subsample comprises the period from August 01, 

2007 to January 30, 2009.22 See panels B and C in Table 1 for summary statistics 

corresponding to each of these two periods. 

 The more steady evolution of the indices around a mean value when making longer-

term predictions also explains the decreasing standard deviation (volatility of interest rate 

volatility) of the indices as the forecast horizon increases. Application of the Jarque-Bera 

test makes us reject the null hypothesis of a normal distribution (series show positive 

skewness and excess kurtosis).23 Regarding to first-order autocorrelation coefficients, they 

show a progressive decline.  

 We also report the results from the Augmented Dickey Fuller (ADF) test performed 

on the logarithm of the volatility indices. Values of the test for its most general 

specification (i.e., with intercept and linear trend) indicate that the unit root hypothesis only 

                                                   
22 August 2007 is usually referred to as the onset date of the subprime crisis, and a change in the values of the 
indices is also especially perceptible around this date. 
23 In line with studies on stock return volatility, such as Christensen and Prabhala (1998) and Andersen, 
Bollerslev, Diebold, and Ebens (2001), we find that the logarithms of the volatility indices (i.e. log implied 
volatilities) are closer to a normal distribution. Nevertheless, the null hypothesis of normality continues being 
rejected. 
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can be rejected for IRVIX(t,10Y).24 Nevertheless, the time series plot might suggest a 

possible structural break in the series instead of a unit root. Further analysis on this issue is 

included next. 

 From the evidence reported by Perron (1989) on the data generating process of a set 

of macroeconomic series, we know that failure to account for possible breaking points may 

significantly reduce the power of traditional unit root tests that are biased towards the non-

rejection of the null hypothesis. Thus, in addition to the ADF test, we apply the test 

developed by Zivot and Andrews (1992) that allows for a one-time structural break in the 

data. Unlike the test proposed by Perron (1989), the breaking point is endogenously 

determined as the outcome of the test instead of being considered as an exogenous 

occurrence.   

 Results of the Zivot-Andrews test applied to the logarithm of the set of indices are 

shown in Table 2. Following the analysis implemented in the work by Chaudhuri and Wu 

(2003), we report the estimation results of the specification that gives the most significant 

test statistic on αi (i.e., the specification that reports the strongest evidence against the unit 

root hypothesis). Inference concerning the unit root hypothesis is based on the asymptotic 

critical values provided by Zivot and Andrews (1992). 

 We observe that the unit root hypothesis continues being accepted for the volatility 

indices with forecast horizons ranging from one to five years; however, IRVIX(t,7Y) might 

be characterized as a trend-stationary process at the 5% significance level after allowing for 

a possible structural break.  

                                                   
24 The same results hold for the trendless version of the test, as well as by applying the modified Dickey-
Fuller test (known as the DF-GLS test) proposed by Elliot, Rothenberg, and Stock (1996).  
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 An additional advantage of this test is that it provides valuable information for 

analyzing whether a structural break in a certain variable is associated with the occurrence 

of a particular event. We find that the coefficients of the break dummy variables are 

statistically significant at the 5% level or better (based on critical values from the standard 

normal distribution) in all the cases. Moreover, as expected, structural breaks in short-term 

IRVIXs identified by the Zivot-Andrews test occur during the summer of 2007. 

 Concerning the two subsamples, summary statistics reveal the higher average value 

of all the volatility indices for the second subsample in comparison to the first subsample. 

In addition, as expected, much of the volatility of the indices computed for the entire 

sample is due to the greater variability observed for the second part of the sample.  

 In any case, we proceed to apply a set of tests to check if there are significant 

differences in the behavior of the indices between both subsamples in Table 3. First, we 

apply the Anova-F test for the equality of means, finding that the means of IRVIXs during 

the two subperiods are significantly different for all the forecast horizons. However, as we 

have found evidence of non-normality in the distribution of the indices, we cannot rely on 

this result.25 Thus, we have proceeded to apply non-parametric tests to find evidence of 

differences in the distribution of the indices before and after the beginning of the crisis. In 

particular, we apply Wilcoxon/Mann-Withney test for the equality of medians and Brown-

Forsythe test for the equality of variances. As expected, outcomes show evidence of 

significant differences in both the median and the variance between the first and second 

subsamples at the 1% significance level for all the indices. 

 
                                                   
25 Jarque-Bera test applied to the log series in both subsamples also makes us reject the null hypothesis of 
normality. 
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 In Table 4 we also show the statistical properties of the first log-difference 

transformation applied on the interest rate volatility indices with terms to maturity from one 

to five years to induce stationarity. 

 The excess kurtosis observed in the original series still remains, but skewness has 

been reduced. The first-order autocorrelation coefficients reveal a statistically significant 

negative autocorrelation that suggests the presence of mean reversion in the first log-

differences of the indices. The same results (excess kurtosis and negative first-order 

autocorrelation) are also reported for different implied volatility indices introduced in stock 

markets in Dotsis, Psychoyios, and Skiadopoulos (2007). According to these authors, the 

evidence of non-normality may be attributed to the presence of jumps in implied volatility. 

Finally, the ADF test allows rejection of the null hypothesis of a unit root in the series. 

 For the series in first log-differences, statistically significant differences in the 

medians between the first and second subsamples are not proved for any forecast horizon 

(see Table 5). The null hypothesis of equality of variances is only rejected for IRVIX(t,4Y) 

and IRVIX(t,5Y). 

 The key difference between the proposed IRVIXs and the MOVE Index constructed 

by Merrill Lynch has been stressed along the article. IRVIXs measure uncertainty about the 

expected three-month interest rate over both short- and long-term (up to ten years) 

horizons, whereas MOVE measures one-month uncertainty about long-maturity yields. 

Next we show descriptive statistics for MOVE and analyze the contemporaneous 

relationship between IRVIXs and some other volatility indices. 

 Table 6 summarizes the statistical properties of MOVE. The mean, median and 

standard deviation computed for MOVE are not comparable to the values estimated for the 
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set of IRVIXs since MOVE is constructed by applying a normalization process. Similar to 

IRVIXs, the series shows positive skewness and excess kurtosis. Finally, according to the 

ADF test performed on the logarithm of MOVE, the hypothesis of a unit root cannot be 

rejected. Nevertheless, after allowing for a structural break in the series, results from the 

Zivot-Andrews test suggest the rejection of the unit root hypothesis at the 5% significance 

level.26  

 In Figure 5 we show the contemporaneous relationship between weekly changes in 

the logarithm of IRVIX with the shortest term to maturity, IRVIX(t,1Y), and some other 

volatility indices. In particular, with respect to IRVIX(t,10Y), MOVE, LBPX, and VIX. On 

the one hand, a relationship between IRVIXs with the closest and furthest forecast horizons 

is barely perceptible. On the other hand, scatter plots suggest that IRVIX(t,1Y) is positively 

related to both other interest rate volatility indices (MOVE and LBPX) and VIX.  

 

 
                                                   
26 The t-statistic for α = 0 in Model C is -5.37. According to the test, the timing of the structural break is set at 
TB = 06/13/2007. 
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FIGURE 5. Scatter plots of weekly log-changes in IRVIX(t,1Y) against weekly log-
changes in IRVIX(t,10Y), MOVE, LBPX, and VIX 

 

In order to quantify the relationships between the different indices, we carry out a 

correlation analysis. We are also interested in analyzing whether the indices tend to move 

more closely during periods of financial instability. Thus, linear correlation coefficients are 

reported for the entire sample and also before and after the beginning of the subprime crisis 

(see Table 7). 

 Outcomes show that all the indices are positively correlated. Not surprisingly, we 

find that IRVIX(t,1Y) is clearly more strongly correlated to IRVIX(t,2Y) than to 

IRVIX(t,10Y). Correlation coefficients are 0.71 and 0.10, respectively. Let´s remember that 

IRVIX(t,1Y) captures interest rate volatility one year ahead, whereas IRVIX(t,2Y) and 

IRVIX(t,10Y) do the same over the next two and ten years, respectively. This fact also 

explains why IRVIX(t,1Y) is the most correlated index with MOVE, which captures market 

expectations of volatility over the next month. Moreover, the correlation coefficient 
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between IRVIX(t,1Y) and MOVE is very similar to the one computed with respect to VIX, 

which measures stock market uncertainty over the same forecast horizon. We also observe 

that the strongest correlation between IRVIXs and the rest of indices is reported for short-

term IRVIXs and LBPX (linear correlation is 0.51). Finally, Panels B and C reveal that 

short-term IRVIXs, MOVE, LBPX and VIX tend to move more closely in a context of 

higher financial uncertainty. 

 Next, we focus on the relationship between the interest rate volatility indices and 

their underlying forward rates. In the equity market literature, a negative contemporaneous 

relationship between implied volatility indices and the returns of the underlying stock 

market indices has been usually reported. Studies by Fleming, Ostdiek, and Whaley (1995), 

Whaley (2000), Skiadopoulos (2004), Giot (2005), and González and Novales (2009) 

document this feature for different countries and time periods.  

 Figure 6 shows weekly log-changes in interest rate volatility indices against weekly 

log-changes in forward interest rates at the two closest forecast horizons (one and two 

years) over the entire sample. 
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Figure 6. Scatter plots of weekly log-changes in interest rate volatility indices against 
weekly log-changes in forward interest rates at the one-year and two-year forecast horizons. 

 

 Graphs suggest an evident negative contemporaneous relationship between changes 

in short-term IRVIXs and changes in forward rates. The linear fitting releases correlation 
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coefficients of -0.57 at the one-year forecast horizon and -0.58 at the two-year forecast 

horizon (see Table 8). Two important conclusions can be drawn from this analysis. First, 

we prove that the negative relationship between changes in implied volatility indices and 

the respective underlying also holds in the fixed-income market. Moreover, we show that 

this relationship holds when making predictions of volatility for longer forecast horizons 

than those used in stock markets. Second, we find that volatility indices and forward rates 

seem to be more negatively correlated in periods of financial turmoil even though both 

variables are also strongly correlated in periods of financial stability.  

 This tight relationship between changes in volatility and forward rates must be taken 

into account when designing hedging strategies. According to our results, an increase 

(decrease) in interest rates has a double impact on the prices of caps, floors, caplets or 

floorlets. On the one hand, as interest rates rise (fall), caps become deeper in the money 

(out of the money). On the other hand, the consequent decrease (increase) in volatility as a 

result of interest rates rising (falling) would pull down (up) the price of the option. 

Therefore, delta-hedging would not be adequate, as the cap or caplet prices would react less 

(more) than expected against interest rate changes. 

 The large shifts in volatility observed in the behavior of IRVIXs (volatility of 

volatility) in periods such as Winter 2007 (especially at the one-year forecast horizon) and 

Fall of 2008 reveal the growing need for derivatives to hedge volatility risk. Currently, VIX 

options and VIX futures are among the most actively traded contracts at the CBOE and the 

CBOE Futures Exchange (CFE), and we also foresee good expectations about the use of 

derivatives on an interest rate volatility index. Similar to VIX futures and options in the 



36 
 

equity market, the introduction of futures and options on IRVIXs would offer a very useful 

tool to hedge against changes in interest rate volatility. 

  

6. Summary and conclusions 

 In this paper, we propose a methodology for the construction of a set of indices that 

reflect market expectations about the volatility of three-month tenor forward rates up to ten 

years ahead.  

IRVIXs have been extracted from one of the most liquid interest rate derivatives 

markets: the cap (floor) market. Apart from their high liquidity, these instruments allow 

measuring interest rate volatility over both short- and long-term horizons. This constitutes 

one of the main differences with respect to other volatility indices in the fixed-income 

market like MOVE, which measures the volatility of long-term yields of Treasury securities 

over a one-month horizon, or LBPX, which does not have a specific forecast horizon. 

We construct a daily set of interest rate volatility indices with different forecast 

horizons (one year, two years, three years, four years, five years, seven years and ten years) 

over the period from August 26, 2004 to January 30, 2009.  

We find that interest rate volatility indices have reacted very sharply to the 

uncertainty caused by the current financial crisis, suggesting their potential use as business 

cycle indicators. The impact of the current financial turmoil seemed to initially affect short-

term market predictions of volatility, but as the crisis deepened, it also eventually had a 

very relevant impact on long-term IRVIXs, which suggests an increase in the investors´ 

long-term uncertainty regarding the future evolution of interest rates. 



37 
 

We also analyze the contemporaneous relationship between IRVIXs and other 

volatility indices for both the fixed-income and the equity markets: MOVE, LBPX, and 

VIX. We find that short-term IRVIXs are most highly correlated with these three indices. In 

addition, we observe that these indices tend to move more closely in a context of higher 

financial uncertainty. 

Another remarkable finding is the strong negative correlation between changes in 

IRVIXs and in the underlying forward rates, particularly for short-term horizons (maximum 

level of linear correlation is found at the two-year forecast horizon with a correlation 

coefficient of -0.58). These outcomes are in line with the earlier empirical evidence in stock 

markets, but furthermore, we prove that the negative relationship between volatility indices 

and underlying financial variables also holds for longer forecast horizons. 

Moreover, we find that the strong negative correlation holds for the two subperiods 

into which we divide the sample period, i.e., before and after the beginning of the present 

financial crisis. This fact should be taken into account when proceeding to hedge against 

interest rate risk using option-like contracts and particularly when designing delta-hedging 

strategies. An increase (decrease) in interest rates will cause changes in the value of caps 

and floors, but this change can be offset by the impact of consequent movements in 

volatility. 

 Concerning the statistical properties of the set of indices, the analysis of the first 

log-differences of the original indices shows excess kurtosis (leptokurtosis) and significant 

negative first-order autocorrelation. The same findings were obtained for most of the 

implied volatility indices in stock markets, where the non-normality is sometimes attributed 



38 
 

to the presence of jumps, and the negative first-order autocorrelation supports the modeling 

of implied volatility indices as mean-reverting processes. 

 The distributional similarities with other volatility indices such as VIX or VDAX, 

and the dramatic changes experienced by interest rate volatility during the current financial 

crisis suggest that the introduction of futures and options on IRVIXs would offer a very 

useful tool to hedge against this important source of risk, similar to how futures and options 

on stock volatility indices hedge against changes in stock market volatility. 
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Appendix 

 

The objective of the interpolation/extrapolation techniques used in the paper is 

twofold. On the one hand, we need a good fitting of the term structure of flat volatilities as 

a function of the term to maturity, particularly to capture the hump usually observed in the 

mid-term maturities. This requires that simple linear interpolation techniques be avoided, as 

they can lead to underestimation of flat volatilities around the peak of the hump. On the 

other hand, we need to use a method that determines these intermediate flat volatilities 

without ambiguity, i.e., a method that leads to uniquely determined values for intermediate 

flat volatilities.  

Let us recall that the maximum number of flat volatility quotes available for a 

particular strike corresponds to caps (floors) with maturities of one to ten years plus 12, 15 

and 20 years (13 maturities). When the number of available flat volatility quotes is equal to 

or greater than six, we use cubic splines. Otherwise, we propose simple linear 

interpolation/extrapolation. 

In the first case, we distinguish two possibilities. If the number of observations is 

greater than nine, we use cubic splines with two intermediate knots. Otherwise, we use a 

single knot. Knots are positioned in such a way that the observations are uniformly 

distributed between knots. In particular, the position of the knots is set as follows. 

Let N denote the number of available flat volatilities for a particular strike and t1 

and t2 denote the positions of the knots. Then, we have the following: 
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If N= 13, t1 = 4.5 and t2= 8.5. 

If N=12, t1 is settled in the midpoint between the fourth and fifth  observations 

 and t2 in the midpoint between the eighth and ninth observations. 

If N=11, t1 is positioned in the midpoint between the third and fourth 

 observations and t2 in the midpoint between the seventh and eighth observations. 

If N=10, t1 is settled at the midpoint between the third and fourth  observations 

 and t2 in the midpoint between the sixth and seventh observations. 

If N=9 or N=8, the unique knot is settled at the midpoint between the fourth 

 and fifth observations. 

If N=7 or N=6, the knot is positioned at the midpoint between the third and 

 fourth observations. 

 When N is less than 6, we apply linear interpolation. For those caps with maturities 

out of the range of available maturities, we proceed to extrapolate. Let us denote the flat 

volatilities of the caps (floors) with the shortest and greatest terms to maturity by K
flatMin,  

and K
flatMax, , respectively. Then, for caps (floors) maturing before the first available cap 

(floor), we assume that flat volatilities are equal to K
flatMin, . For caps with maturity greater 

than the last available cap (floor), we assume that flat volatilities are equal to K
flatMax , . 

 To give a hint of the completeness of the sample, Table 9 shows the proportion of 

flat volatilities available, corresponding to a single day and a given strike during the whole 

sample. As it is considered desirable in 89% of cases, the sample is complete (thirteen 
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observations), and only in roughly 2% of cases do we have to apply linear interpolation or 

extrapolation techniques. 
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TABLE 1.- Summary statistics of IRVIXs across the entire sample (Panel A) and for two 
subsamples: from August 26, 2004 to July 31, 2007 (Panel B) and from August 01, 2007 to 
January 30, 2009 (Panel C) 
 

 IRVIX 
(t,1Y) 

IRVIX 
(t,2Y) 

IRVIX 
(t,3Y) 

IRVIX 
(t,4Y) 

IRVIX 
(t,5Y) 

IRVIX 
(t,7Y) 

IRVIX 
(t,10Y) 

 

Panel A: August 26, 2004 to January 30, 2009 
Observations 1125 1125 1125 1125 1125 1125 1125 
Mean 0.24 0.23 0.24 0.22 0.19 0.17 0.17 
Median 0.17 0.20 0.22 0.21 0.19 0.16 0.17 
Std. Deviation 0.15 0.09 0.06 0.05 0.04 0.03 0.03 
Skewness 1.63 1.54 1.04 1.33 2.48 2.82 1.74 
Kurtosis 5.16 5.54 4.22 5.95 11.39 13.43 8.93 
Jarque-Bera 
 

722.10 
(0.00) 

752.87 
(0.00) 

275.01 
(0.00) 

745.70 
(0.00) 

4468.85 
(0.00) 

6596.56 
(0.00) 

2223.26 
(0.00) 

ρ1 0.99* 0.98* 0.97* 0.96* 0.96* 0.92* 0.83* 

ADF -1.90 -1.61 -1.63 -1.36 -1.67 -2.20 -3.67* 

Panel B: August 26, 2004 to July 31, 2007 
Observations 756 756 756 756 756 756 756 
Mean 0.16 0.19 0.21 0.20 0.17 0.15 0.16 
Median 0.15 0.18 0.21 0.20 0.18 0.15 0.17 
Std. Deviation 0.04 0.04 0.04 0.03 0.02 0.01 0.02 
Skewness 1.66 0.91 0.62 0.40 -0.11 0.03 -0.38 
Kurtosis 5.59 3.23 2.89 2.50 2.09 2.88 3.27 
Jarque-Bera 560.84 

(0.00) 
106.51 
(0.00) 

50.12 
(0.00) 

28.82 
(0.00) 

27.41 
(0.00) 

0.57 
(0.75) 

20.83 
(0.00) 

Panel C: August 01, 2007 to January 30, 2009 
Observations 369 369 369 369 369 369 369 
Mean 0.41 0.33 0.29 0.26 0.22 0.19 0.19 
Median 0.36 0.30 0.28 0.25 0.21 0.17 0.17 
Std. Deviation 0.15 0.09 0.06 0.05 0.05 0.05 0.04 
Skewness 0.77 0.95 0.68 1.17 1.81 1.76 1.34 
Kurtosis 2.63 3.50 3.20 4.48 5.43 5.63 4.82 
Jarque-Bera 39.33 

(0.00) 
59.41 
(0.00) 

29.69 
(0.00) 

118.41 
(0.00) 

293.78 
(0.00) 

299.50 
(0.00) 

162.84 
(0.00) 

 
Notes:  
a p-values of the Jarque-Bera test are inside parenthesis. 
b ρ1 denotes the first-order autocorrelation coefficient. 
c The ADF test is performed on the logarithm of the indices. The optimal lag length is determined according 

to the Akaike information criterion, with the maximum lag set to 21 based on Schwert (1989). 
d One asterisk denotes statistical significance at the 5% significance level. Two asterisks denote statistical 

significance at the 1% significance level. 
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TABLE 2.-Zivot-Andrews structural break test performed on the logarithm of IRVIXs 
 

 Model TB k θ γ α 
log IRVIX 1Y C 07/26/2007 4 0.0427 (4.666) 0.0001 (2.597) -0.0431 (-4.696) 
log IRVIX 2Y C 07/05/2007 4 0.0263 (3.699) 0.0001 (2.804) -0.0448 (-4.204) 
log IRVIX 3Y C 07/20/2007 11 0.0328 (3.691) 0.0001 (2.371) -0.0640 (-3.928) 
log IRVIX 4Y C 07/20/2007 8 0.0265 (3.511) 0.0001 (2.933) -0.0701 (-4.141) 
log IRVIX 5Y B 05/29/2007 4  0.0001 (4.069) -0.0664 (-4.330) 
log IRVIX 7Y B 05/21/2008 9  0.0004 (4.463) -0.098* (-4.813) 
log IRVIX 10Y B 06/06/2007 7  0.0002 (4.126) -0.1363** (-5.471) 

 
Notes:  
a IRVIX 1Y indicates the index maturing in one year.  
b Optimal lag length, k, is selected according to the Akaike information criterion, with the maximum lag set to 

21 based on Schwert (1989). 
c Numbers inside parenthesis are t-ratios.  
d The 10%, 5% and 1% asymptotic critical values for the t-statistic for αi = 0 (i = A, B or C), obtained from 

Zivot and Andrews (1992), are respectively as follows. Model A: -4.58, -4.80, and -5.34; Model B: -4.11, -

4.42, and -4.93; Model C: -4.82, -5.08, and -5.57. 
e One asterisk and two asterisks denote statistical significance at the 5% and 1% levels, respectively, based on 

the asymptotic critical values. 

 

The test is described as follows. Let TB be a potential breaking point in the series yt. The test may be 

performed based on three alternative specifications of the process followed by the series: 
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where t is the time trend variable; the two dummy variables are defined as follows: DUt = 1 if t > TB, zero 

otherwise, and DTt = t - TB if t > TB, zero otherwise; and εt are white noise processes. This way, Model (A) 

allows for a one-time change in the intercept; Model (B) permits a break in the slope of the trend function; 

and Model (C) admits both changes. Like in the ADF test, the k extra lags of the dependent variable are added 

to correct for serial correlation in the error term.  

The null hypothesis in all the three models is αi = 0 (i = A, B or C), i.e., the series follows a unit root process; 

while the alternative hypothesis implies that the series is a trend-stationary process with a one-time break in 

the trend function occurring at an unknown point in time. The goal of the procedure is to search for the break 

point that gives the most weight to the trend-stationary alternative. In a sample with T observations, for each 
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specification (A, B or C), to determine the break and to compute the test statistic for a unit root, an ordinary 

least squares regression is run with a potential break point at TB (for TB ranging from 2 to T – 2). 

 
TABLE 3.- Tests of equality of means, medians and variances between the first and second 
subsamples of IRVIXs 
 

 IRVIX 
(t,1Y) 

IRVIX 
(t,2Y) 

IRVIX  
(t,3Y) 

IRVIX  
(t,4Y) 

IRVIX  
(t,5Y) 

IRVIX  
(t,7Y) 

IRVIX 
(t,10Y) 

Anova F- test 1617.44** 1159.20** 598.00** 517.09** 398.80** 261.47** 154.28** 

Wilcoxon/Mann-
Withney test 25.92** 24.07** 19.04** 18.54** 17.86** 13.92** 8.38** 

Brown-Forsythe 
test 328.77** 181.40** 67.57** 47.10** 75.17** 114.01** 122.07** 

 

Notes:  
a One asterisk denotes statistical significance at the 5% significance level. Two asterisks denote statistical 

significance at the 1% significance level. 
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TABLE 4.- Summary statistics of first-log differences of IRVIXs across the entire sample 
(Panel A) and for two subsamples: from August 26, 2004 to July 31, 2007 (Panel B) and 
from August 01, 2007 to January 30, 2009 (Panel C) 
 
 IRVIX 

(t,1Y) 
IRVIX 
(t,2Y) 

IRVIX 
(t,3Y) 

IRVIX 
(t,4Y) 

IRVIX 
(t,5Y) 

Panel A: August 26, 2004 to January 30, 2009 
Observations 1124 1124 1124 1124 1124 
Mean 0.0005 0.0004 0.0001 0.0002 0.0005 
Median 0.0002 0.0013 0.0001 0.0001 -0.0002 
Std. Deviation 0.05 0.05 0.06 0.05 0.05 
Skewness 0.33 -0.12 0.15 -0.02 -0.16 
Kurtosis 6.31 5.69 5.82 6.00 6.00 
Jarque-Bera 535.67 (0.00) 343.31 (0.00) 376.89 (0.00) 423.12 (0.00) 428.62 (0.00) 
ρ1 -0.28* -0.37* -0.36* -0.37* -0.44* 

ADF -20.54** -20.43** -12.98** -15.68** -22.21** 

Panel B: August 26, 2004 to July 31, 2007 
Observations 755 755 755 755 755 
Mean -0.0009 -0.0006 -0.0005 -0.0004 -0.0001 
Median -0.0011 0.0003 0.0002 -0.0001 -0.0005 
Std. Deviation 0.05 0.05 0.06 0.05 0.05 
Skewness 0.45 -0.17 0.12 -0.007 -0.19 
Kurtosis 7.23 5.97 6.71 7.22 6.61 
Jarque-Bera 591.17 (0.00) 283.03 (0.00) 437.15 (0.00) 561.53 (0.00) 415.06 (0.00) 
Panel C: August 01, 2007 to January 30, 2009 
Observations 368 368 368 368 368 
Mean 0.0035 0.0027 0.0015 0.0015 0.0021 
Median 0.0034 0.0042 -0.0009 0.0016 0.0000 
Std. Deviation 0.05 0.05 0.06 0.06 0.06 
Skewness 0.06 -0.04 0.20 -0.05 -0.15 
Kurtosis 4.18 5.17 3.69 4.16 5.05 
Jarque-Bera 21.71 (0.00) 72.44 (0.00) 10.11 (0.00) 20.98 (0.00) 66.50 (0.00) 
 
Notes:  
a p-values of the Jarque-Bera test are inside parenthesis. 
b ρ1 denotes the first-order autocorrelation coefficient. 
c The optimal lag length in the ADF test is determined according to the Akaike information criterion, with the 

maximum lag set to 21 based on Schwert (1989). 
d One asterisk denotes statistical significance at the 5% significance level. Two asterisks denote statistical 

significance at the 1% significance level. 
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TABLE 5.- Tests of equality of means, medians and variances between the first and second 

subsamples of IRVIXs with terms to maturity from one to five years in first log-differences 

 
 IRVIX 

(t,1Y) 
IRVIX 
(t,2Y) 

IRVIX 
(t,3Y) 

IRVIX 
(t,4Y) 

IRVIX 
(t,5Y) 

Anova F- test 1.53 1.00 0.26 0.26 0.38 
Wilcoxon/Mann-
Withney test 1.44 1.10 0.05 0.74 0.54 

Brown-Forsythe 
test 0.06 0.59 0.68 5.81* 4.70* 

 

Notes:  
a One asterisk denotes statistical significance at the 5% significance level. Two asterisks denote statistical 

significance at the 1% significance level. 

 

TABLE 6.- Summary statistics of the MOVE Index constructed by Merrill Lynch across 
the entire sample 
 

 MOVE  
Observations 1109 
Mean 0.009 
Median 0.008 
Std. Deviation 0.004 
Skewness 1.46 
Kurtosis 4.67 
Jarque-Bera 527.88 (0.00) 
ρ1 0.99* 

ADF -2.50 
 
Notes:  
a p-value of the Jarque-Bera test is inside parenthesis. 
b ρ1 denotes the first-order autocorrelation coefficient. 
c The ADF test is performed on the logarithm of MOVE. The optimal lag length is determined according to 

the Akaike information criterion, with the maximum lag set to 21 based on Schwert (1989). 
d One asterisk denotes statistical significance at the 5% significance level. Two asterisks denote statistical 

significance at the 1% significance level. 
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TABLE 7. Correlation coefficients between weekly log-changes in IRVIX(t,1Y), 
IRVIX(t,2Y), IRVIX(t,10Y), MOVE, LBPX, and VIX across the entire sample (Panel A) 
and for two subsamples: from August 26, 2004 to July 31, 2007 (Panel B) and from August 
01, 2007 to January 30, 2009 (Panel C) 
 

Panel A: August 26, 2004 to January 30, 2009 
 IRVIX(t,1Y) IRVIX(t,2Y) IRVIX(t,10Y) MOVE LBPX VIX 
IRVIX(t,1Y) 1 0.71 0.10 0.37 0.51 0.40 
IRVIX(t,2Y) 0.71 1 0.13 0.36 0.51 0.34 
IRVIX(t,10Y) 0.10 0.13 1 0.09 0.19 0.16 
MOVE 0.37 0.36 0.09 1 0.55 0.38 
LBPX 0.51 0.51 0.19 0.55 1 0.42 
VIX 0.40 0.34 0.16 0.38 0.42 1 
Panel B: August 26, 2004 to July 31, 2007 
 IRVIX(t,1Y) IRVIX(t,2Y) IRVIX(t,10Y) MOVE LBPX VIX 
IRVIX(t,1Y) 1 0.61 0.12 0.29 0.46 0.27 
IRVIX(t,2Y) 0.61 1 0.06 0.27 0.49 0.23 
IRVIX(t,10Y) 0.12 0.06 1 0.12 0.16 0.14 
MOVE 0.29 0.27 0.12 1 0.58 0.39 
LBPX 0.46 0.49 0.16 0.58 1 0.36 
VIX 0.27 0.23 0.14 0.39 0.36 1 
Panel C: August 01, 2007 to January 30, 2009 
 IRVIX(t,1Y) IRVIX(t,2Y) IRVIX(t,10Y) MOVE LBPX VIX 
IRVIX(t,1Y) 1 0.79 0.08 0.43 0.57 0.54 
IRVIX(t,2Y) 0.79 1 0.18 0.44 0.53 0.45 
IRVIX(t,10Y) 0.08 0.18 1 0.06 0.20 0.18 
MOVE 0.43 0.44 0.06 1 0.57 0.37 
LBPX 0.57 0.53 0.20 0.57 1 0.50 
VIX 0.54 0.45 0.18 0.37 0.50 1 
 
 
TABLE 8. Correlation coefficients between weekly log-changes in IRVIXs and weekly 

log-changes in underlying forward interest rates from one-year to ten-year forecast horizons 
 1Y 2Y 3Y 4Y 5Y 7Y 10Y 
Entire sample -0.57 -0.58 -0.49 -0.51 -0.42 -0.33 -0.20 
First subsample -0.55 -0.53 -0.34 -0.35 -0.35 -0.25 -0.15 
Second subsample -0.63 -0.63 -0.62 -0.63 -0.49 -0.40 -0.23 
 
Notes: 
a 1Y stands for the time to maturity of both IRVIXs and forward rates. 
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TABLE 9. Frequency of available flat volatility quotes along the sample 

 

Number of available  
flat volatilities 

Frequency 

N = 13 0.8970 
N = 12 0.0332 
N = 11 0.0110 
N = 10 0.0100 
N = 9 0.0088 
N = 8 0.0059 
N = 7 0.086 
N = 6 0.056 
N = 5 0.0049 
N = 4 0.0036 
N = 3 0.0041 
N = 2 0.0034 
N = 1 0.0032 

 


